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The method of Tanaka (1983) is used to  solve the eigenvalue problem determining 
the form of the first superharmonic instability of periodic Stokes waves. Comparisons 
are made with other approaches to  this problem and a discussion of the advantages 
of Tanaka’s method is given. The accurately resolved eigenfunction solution is then 
taken as the initial state for commencing the computational time-stepping method 
of Dold & Peregrine (1985), by which we investigate the full nonlinear development 
of the growing and decaying modes of this instability. It is observed that all unstable 
modes develop to breaking in the periodic regime and this result is compared and 
contrasted with the solitary wave case. 

1. Introduction 
Since Tanaka (1983) published his results for the form of the first superharmonic 

instability of periodic two-dimensional Stokes waves in deep water - a problem first 
considered by Longuet-Higgins (19784 - a considerable debate has taken place 
concerning the location of instability onset measured along the wave height 
parameter scale. The disagreement grew from Tanaka’s finding that the first 
superharmonic instability mode passed through the energy maximum a t  the same 
wave height that  i t  changes from stable to  unstable propagation. This seemed to 
contradict water wave stability theory, as it was then understood, which predicted 
that this mode would become unstable a t  the phase speed maximum, otherwise 
bifurcation to new wave forms would become apparent. 

The problem has now been fully resolved and thanks to the analytical work of 
Longuet-Higgins (1984) and Saffman (1985) we now realize that the only bifurcation 
to occur a t  the maximum energy non-limit point is the trivial one of a pure phase 
shift and so we do not expect the appearance of new waves, in keeping with the 
uniqueness argument of Garabedian (1965). Thus the eigensolution for the 
perturbation profile of the first superharmonic instability changes with increase in 
wave height toward the form of the pure phase shift eigensolution which it comes to 
resemble exactly a t  the point of stability exchange. Numerical evidence for this is 
provided by Tanaka (1985) and an analytic formalism which uses Hamiltonian 
representation is given by Saffman (1985). 

Tanaka (1986) has also studied the linear stability of the solitary wave and found 
a related zero exchange of stability at the energy maximum of the wave steepness. 
When this profile is used as the initial condition for a numerical time-stepping 
scheme it  is found that the more slowly growing unstable mode does not necessarily 
initiate wave breaking. Instead the wave is continuously deformed so that it 
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approaches the form of a stable wave of lower amplitude but closely conserved 
energy, sending out trailing and radiated waves so that mass and momentum are 
conserved. Full details of this work are given in Tanaka et al. (1987). 

The question of the behaviour of periodic Stokes waves under these conditions has 
no obvious answer since any radiated and trailing waves emitted will not be 
dispersed to infinity but will be contained to interact further with the basic wave. 
The time evolution of this instability is thus an open question which we seek to 
address here. 

In  $2 we discuss the details of various methods which can be employed to solve 
both the steady wave and the normal mode time-dependent perturbation problems. 
Section 3 describes the inverse plane methods and results obtained by normal-mode 
analysis and we consider the form of the eigenvalues and the perturbation profiles 
produced by the eigenvectors. Employing the time-stepping scheme of Dold & 
Peregrine (1985) in $4 we investigate the behaviour of both the faster and slower 
growing instabilities together with the decaying modes. A discussion of these results 
and a comparison with the behaviour of the solitary wave are given in $5. 

2. Discussion of inverse plane methods 
To solve the first-order eigenvalue problem derived from the normal-mode time 

perturbation of the kinematic and dynamic boundary conditions which determine 
the behaviour of a free surface we employed two currently available methods. Both 
are hybrids of the series approach first used by Stokes (1880) in which the physical 
coordinates (x, y) are represented as Fourier series of the velocity potential C$ and 
stream function 9. The advantage with this approach is that the free surface can be 
more easily represented as the streamline $ = 0 in the complex potential x (or 
inverse) plane than as an unknown function of displacement in the physical plane. 

First we consider the problem of steady Stokes waves. The method derived by 
Longuet-Higgins ( 1986) incorporates previous work first investigated by Longuet- 
Higgins (1978b) where the Stokes coefficients are evaluated by solving the quadratic 
relations between them. Tanaka (1983) used the Nekrasov transformation to map 
the inverse plane into a unit circle. He then concentrated numerical emphasis on the 
crest region of the wave using a further conformal mapping which compresses 
computational grid points together there. 

In  denoting a wave height parameter, Longuet-Higgins uses wave steepness ak 
which, for a wavelength 2n with normalized wavenumber, will be equivalent to half 
the vertical difference between the wave crest and trough displacements. Tanaka 
uses .a less easily physically comprehensible parameter w ,  where 

for particle velocity q in the rest frame, which has w = 0 for infinitesimal waves and 
w = 1 for the steepest wave. Both notations will be used here. 

I n  figure 1 we show a plot of x - the horizontal coordinate of displacement - 
against velocity potential over phase speed, $ / c ,  in a frame of reference moving with 
the phase speed so that the unperturbed steady free surface is fixed. We note that for 
steep waves the form of this curve changes in the region of the crest (at the origin) 
as we increase the wave height parameter toward the maximum 120' crest wave. 

Physical plane methods, such as Rienecker & Fenton (1981), in which C$/c is 
considered as a Fourier expansion in x will accurately describe the crest region - 
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FIQURE 1. Plot of z against $ / c  for the steady nonlinear periodic wave w = 0.82 (ak = 0.4302). The 
wave crest is at the origin and the troughs are on either far side. The projection is marked by lines 
from the curve to the $/c-axis. The two methods have point annotations and projections in the 
form : Tanaka ( + , dashed), Longuet-Higgins ( x , dotted). 

however, the discontinuous first derivative due to the 120" angle will greatly hinder 
the convergence of the method for steep waves, particularly since it requires more 
computational variables. Thus we use an inverse plane method as described earlier. 

The problem with the representation of Longuet-Higgins will be that of accurately 
resolving the free-surface curvature a t  the crest. This difficulty will not be 
experienced by Tanaka's method since computational points are concentrated here 
at the expense of the trough region which can be seen to change little with increasing 
wave height and so will cause no essential loss of resolution to detract from the 
method. It will be observed later that for very steep waves the form of the normal- 
mode perturbation components are most pronounced in the region of the wave crest 
and become small upon moving toward the wave trough. A computational-grid 
distribution with emphasis upon the crest is required for good resolution and 
Tanaka's method has this advantage. 

3. Method and results of normal-mode analysis 
The complete first-order problem involves the solution of the time-dependent 

boundary conditions for an incompressible, inviscid, irrotational fluid flow in deep 
water governed by Laplace's equation, where we work in the reference frame of $2. 
Particular emphasis is given to Tanaka's method in the following exposition. The 
boundary conditions are given by 

#t + t(V#)z + 17 = constant, 

?It + #x 17, = #v, 

(2) 

(3) 
for the dynamic and kinematic equations respectively, which must both be solved on 
the perturbed free surface y = g ( x ,  t ) .  Partial derivatives here are denoted by 



566 W .  J .  Jillians 

subscripts of the derivative variable. We expand both solutions into steady and 
small time-dependent perturbation quantities using 

where H ( x )  and @(x, y) represent the profile of the free surface and the velocity 
potential for the steady unperturbed wave respectively. The quantities and 6 are 
small first-order time-dependent perturbations of these steady functions respectively, 
whose products and higher powers can be assumed negligible. 

To solve the steady wave problem we just need to solve ( 2 )  to highest order, 
neglecting time dependence. We do this using a Fourier sequence of powers of 
complex coefficients - as outlined in greater detail in Tanaka (1983). The first-order 
perturbation problem is solved using both (2) and (3) simultaneously and assuming 
all time dependence is of the form e-iat. We may rewrite this system of equations by 
expanding the perturbed quantities in a Fourier series which we truncate a t  n = N .  
Hence we derive (4N+ 2) homogeneous equations for the coefficients of cos n y  (n  = 
0, . . . , N )  and sin n y  (n  = 1, . . . , N )  from the two nonlinear equations to solve for the 
unknown eigenvalue and eigenvector c ,x .  The variable y here is the angular 
displacement in the unit circle plane upon performing all Tanaka’s conformal 
mappings. By rearranging the positions of elements in our matrices we exploit the 
fore and aft symmetry of the Stokes wave to write the matrices in the form 

-iuAx = B x ,  ( 5 )  

where Ai, Bi (i = 1,2) are (uV+ 1) x (uV+ 1)  square matrices with elements derived 
from quantities associated with the steady wave problem and 0 is an identically sized 
zero matrix. The eigenvalue u represents the perturbation propagation frequency (if 
real) or the instability growth rate (if pure imaginary). The eigenvectors x,,x, are 
the in-phase and quadrature Fourier components of the perturbation respectively. 

The eigenvalue problem of both author’s methods were solved using an inverse 
iteration technique. I n  order to ensure convergence for the method we solve the 
truncated system for sequences of increasing numbers of Fourier modes N ,  interval 
ALV, and estimate the final value, obtained in theory by using infinite modes, 
employing Richardson’s extrapolation formula 

for A ,  = f, - f N P 1 ,  r = A N / A N P 1  which assumes that each estimate f, forms a 
truncated geometric series in powers of r whose limit can be found as N +  00. We use 
this procedure to estimate both eigenvalue and individual eigenvector components. 
The convergents of IT: and CT; - the squared eigenfrequency of the pure phase shift 
and first superharmonic mode respectively - are given in table 1 for some selected 
values of w and the estimates produced from the Richardson extrapolation are given 
in table 2. It is found that the value ut passes through zero a t  the energy maximum 
ak = 0.4292 or w = 0.8135 in agreement with Longuet-Higgins (1986) and Tanaka 
(1983). 

Slight problems are encountered with convergence in the immediate region of the 



Superharmonic instability of Stokes waves in deep water 567 

N 

32 
36 
40 
44 
48 

32 
36 
40 
44 
48 

48 
52 
56 
60 
64 

36 
40 
44 
48 
52 

-2.26331 x - 

-4.85768 x 1778 
- 1.05553 x 380 
- 2.32243 x lo-@ 82 
-5.17344 x lo-' 18 

- 2.34836 x - 

- 1.69643 x 456 
-4.68691 x lo-' 123 
- 1.31635 x 34 

-6.25327 x lo-' 1723 

1.43436 x - 

4.21570 x lo-@ 1013 
1.254 18 x lo-@ 296 
3.77269 x 87 
1.14622 x lo-' 26 

5.89213 x - 

1.84501 x 405 
5.87515 x lo-' 126 
1.89998 x lo-' 40 
6.22993 x 13 

r 
w = 0.8 
- 

- 

0.214 
0.217 
0.2 19 
w = 0.81 
- 

- 

0.264 
0.269 
0.275 
w = 0.82 
- 

- 

0.292 
0.296 
0.230 
o = 0.825 
- 

- 

0.31 1 
0.316 
0.321 

4 
0.014885 7 
0.0148778 
0.0148776 
0.014877 8 
0.0148779 

0.0040082 
0.003995 3 
0.0039920 
0.003991 2 
0.0039909 

-0.007 6560 
- 0.007 655 8 
- 0.007 655 8 
- 0.007 655 8 
- 0.007 655 8 

- 0.013838 2 
- 0.013828 6 
-0.013825 7 
-0.0138248 
-0.0138245 

A 

- 

- 78 
- 16 

17 
7 

- 

- 129 
- 32 

-9 
-3 

- 

180 
50 
14 
4 

- 

956 
295 
92 
29 

r 

- 

- 

0.021 
- 1.072 

0.397 

__ 
- 

0.251 
0.276 
0.283 

- 

- 

0.279 
0.291 
0.294 

- 

- 

0.309 
0.31 1 
0.344 

TABLE 1 : Convergents to u; and ui using Tanaka's method 

w N*,x u: 4 u2 

0.8 48 -6.4226 x lo-'' 0.014878 0.121 98 
0.81 48 - 1.9359 x 0.003991 0.063 17 
0.82 64 9.8220 x lo-'* - 0.007 656 0.08750i 
0.825 52 7 .1616~  10-lo -0.013824 0.1175% 

TABLE 2. Estimates of ui, ui and u2 using Tanaka's method where N,,, is the number of 
coefficients used in extrapolation 

energy maximum since the inverse iteration scheme cannot distinguish the two 
eigenvectors easily when they are close together. We can overcome this problem by 
calculating all eigenvalues of the system to some order precisely using a separate 
scheme and then starting the inverse interaction scheme with this exact value to 
guarantee convergence. The results show that we can expect the eigenvectors for the 
pure phase shift mode and first superharmonic instability to become identical as 
0+0.8135, as Tanaka first found. 

In calculating the eigenvalues and eigenvectors, the method of Longuet-Higgins 
gave much larger values of r in equation (7)  for both eigenvalues and the moderately 
steep wave eigenvector components, implying slower convergence. The extrapolated 
eigenvalues were very close to  those of table 2 ; however problems were encountered 
with eigenvector convergence which became worse with increasing wave steepness. 
For waves in the vicinity of the energy maximum, 144 Fourier coefficients were 
calculated requiring 900 CPU seconds of computation on an IBM 3081 system. It was 
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FIGURE 2. Plots of the quadrature (left) and in-phase (right) components for different wave heights 
in stable equilibrium for (a)  w = 0.2, (6) 0.7, (c )  0.8, (d )  0.81 ( e )  0.813. Also in unstable 
equilibrium with the decaying mode (Ieft) and growing mode (right): (f) w = 0.815, (9) 0.82, 
(h)  0.83, (i) 0.85. The perturbation components have E = 0.01. 
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found that there was a 0.035 radian angular displacement margin of error in 
N-dimensional vector space between subsequent calculations (AN = 12) of the 
perturbation vector of the Fourier coefficients. This was working a t  the limit of the 
machines memory resources. We should compare this to the maximum of 64 Fourier 
coefficients needed by Tanaka’s method which require 300 CPU seconds on an 
identical machine to calculate to within a 3.5 x lo-‘ radian angular displacement 
margin of error between subsequent calculations. 

With the values of the eigenvectors found using Tanaka’s method we can calculate 
the form of the perturbed profiles to first order in the linearized perturbation 
quantities. Some care must be taken over the signs of the velocity potential and 
displacement perturbations, 6, q, which are dependent upon the direction of 
propagation of the basic wave. 

The plots of the u2 mode perturbations are given in figure 2 for both the in-phase 
and quadrature components of the propagating disturbance and the growing and 
decaying components once the instability becomes effective. For the smallest 
amplitudes in stable equilibrium (figure 2a) both disturbance components resemble 
two sinusoidal waves with wavelength half that  of the basic wave. As the wave 
steepness increases we still have what appears to be two sinusoidal components but 
their effect has become very localized in the region of the crest (figure 2b). By 
w = 0.8 (ak = 0.426, figure Zc) the quadrature component seems to have lost all the 
half-wavelength structure and more closely resembles the full-wavelength modulation 
of the u1 mode. At w = 0.81 (uk = 0.4286, figure 2 4  the in-phase component is 
obviously decaying and the quadrature component looks even more like the pure 
phase shift modulation. This process continues until we have almost exact 
resemblance just before the energy maximum is reached with w = 0.813 (ak = 
0.4291, figure 2e). After we pass through stability exchange we must consider the 
decaying and growing components of the wave, which a t  w = 0.815 (ak = 0.4294, 
figure 2f)  look almost identical, with the only difference between them being either 
an addition or subtraction of what was the calculated in-phase-component - a still 
very small value as it slowly grows from zero at the point of stability exchange. As 
the wave height is increased further this value continues growing and the difference 
between decaying and growing modes becomes more evident with both looking 
progressively less like the form of the pure phase shift. As the wave height is 
increased toward w = 0.85 (ak = 0.4344, figure 2i) the decaying mode perturbation 
develops a local maximum on the rear face of the crest, which has decreasing radius 
of curvature and is becoming a sharp angular feature. Similarly the growing mode 
perturbation develops a local minimum on the forward face of the crest which 
becomes more pronounced as wave height is increased. It may be feasible to draw 
some comparisons between these features and the increase of growthldecay rates of 
the perturbations, and in particular we shall observe in $4 the growing mode 
perturbation feature to always be present in time-stepped profiles which tend toward 
breaking. 

4. Results for time-stepping 
The profiles derived above and shown in figure 2 (9)  for the w = 0.82 (uk = 0.4302) 

unstable wave perturbation, calculated using Tanaka’s method, are now used as the 
initial data for a discretized time-stepping method to observe the nonlinear evolution 
of the unstable disturbances. The environment of this scheme is such that g = 1 and 
the wavelength is 2x considered in the range [0,27c]. Periodic boundary conditions 
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apply so that any marked free-surface particle moving out of range a t  one end will 
rejoin it a t  the other. 

One feature of this Dold & Peregrine (1985) time-stepping method which we use is 
that the most accurate results for long-time calculations are given if the particle 
spacing is proportional to the particle velocity in the stationary reference frame of 
the steady wave. To achieve the required point redistribution accurately an 1 l-point 
interpolation formula is used together with an iteration procedure to calculate 
optimal values for the horizontal and vertical displacements of the wave and for the 
velocity potential a t  each interpolated point. We test our redistributed profile of the 
steady wave using Bernoulli’s equation to calculate the error introduced by the 
interpolation method. We find the maximum error in the pressure over the 
redistributed wave profile as a percentage of the constant value to be 5 x 
which is no different to that calculated from the uninterpolated wave data using 
Tanaka’s method. 

As a measure of displacement change we introduce the growth function R(t) which 
we calculate as 

p ( x ,  t )  dx 
(8) 

R2(t )  = 0) dz ’ 

where h(x,t) is the vertical disturbance from the unperturbed Stokes wave found 
using the 11 -point interpolation formula on the profile calculated by time-stepping 
after a certain time t .  

We can attempt to recover linear stability growth, or a close resemblance to it for 
small but finite E ,  using an initial disturbance in the time-stepping scheme that is 
slightly larger than the errors introduced by the scheme itself. First we have to test 
for the error magnitudes involved when operating the scheme with a steady steep 
Stokes wave (w = 0.82) and no perturbation. Thus the value of h obtained will be a 
measure of scheme-dependent error. It is found that the vertical disturbance h is 
negligible for the time that the scheme operates. More precisely the maximum 
computed value of JF h2 dx for 0 < t < 12 was found to be lop8. These results act as 
a control for the following work. 

We note here the results of some of the time-stepping calculations to recover linear 
stability growth using the method of Longuet-Higgins. Tests of the steady wave 
calculated using the quadratic Stokes coefficient relations found an inherent 
instability of the wave at the crest which grew so that profile instability was induced. 
This was obviously a result of poor resolution of the wave crest using this method and 
implied that this artifact would have become dominant in any attempt to calculate 
the nonlinear development of the first-order perturbation. To attempt to resolve this 
we tried to find the solution by combining Tanaka’s steady wave method and then 
calculating the perturbation disturbance using Longuet-Higgins (1986). When this 
was implemented it was found that linear stability could not be recovered with the 
growing solutions initially increasing much faster than linear growth and then 
settling down to a growth between the expected linear rate and more than twice its 
value - leading quickly to  wave breaking. When these results were found it was 
decided to try to obtain the solutions uniquely using Tanaka’s complete method, 
with much more satisfying consequences. We describe the results thus obtained 
under separate headings for the two unstable cases of the growing and decaying 
modes. 
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FIGURE 3. Growth of the w = 0.82 unstable wave modulations with perturbation magnitude 
I B I  = 0.01 plotting In R against time. The predicted linear growth is shown by the dashed line. The 
faster growing solution has 8 = 0.01 and the slower growth has E = -0.01. 

4.1. The growing modes 
For a large initial perturbation E = 0.01 there is initially a very slight divergence 
from linear stability with time which increases as nonlinear effects begin to exert 
their influence, as can be seen in figure 3 which shows the exponential growth rate 
InR with time. Both solutions have significantly diverged by t = 1.0 and we go on to 
describe their time evolution separately, first for the quickly growing ( E  = 0.01) and 
then the slowly growing mode ( E  = -0.01). 

Plots of the quickly growing perturbed wave developing under the time-stepping 
are port.rayed in figure 4, together with a plot of the function h(x, t )  a t  given times, 
with vertical scale expansion by a factor of 12 to better reveal the nature of the 
disturbance. In this figure every fourth fluid particle in the discretization of the free 
surface is marked. We see that after the initial growth of the perturbation, the 
nonlinear effects act to deepen the trough of the perturbation to a more accentuated 
downward curve than the neighbouring perturbation peak. Thus the wave profile 
itself gradually develops slight asymmetry with the forward wave face steeper than 
the rear. By t = 8.63 the wave seems to be developing a finite-angle crest whose 
remaining radius of curvature is reduced as the wave propagates. By t = 10.0 the 
radius of curvature in the immediate vicinity of the crest has become very small and 
from this point a forward-projecting jet is produced which overturns and tends 
toward breaking which takes place shortly after t = 10.3. 

After the results of Tanaka et al. (1987) for the slowly growing solution of the 
solitary wave instability, we expect the corresponding periodic wave solution to be 
highly interesting and exhibit unusual properties. When we time-step this 
configuration we find that the perturbation initially serves to reduce the overall 
height of the wave (see figure 5). The perturbation grows with time up until t = 11.5 
with a smaller radius of curvature on the forward wave face a t  the perturbation 
maximum and a more rounded curvature in the minimum. The overall wave height 
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FIGURE 4. The time development of the quickly growing w = 0.82 wave unstable mode started 
with e = 0.01. The left-hand diagrams represent the wave profile while the right-hand diagrams 
are the disturbance h(z ,  t )  from the steady wave profile. The time development is taken from 
t = 0 to t = 10 with plots made every quarter-wave period ( t  = 1.44) downwards. 

is a t  its smallest value now. Gradually the sharp perturbation disturbance from the 
original wave has become spread along the whole wavelength. This bears some 
resemblance to the production of a linear trailing wave from the basic wave whose 
amplitude is growing to a maximum, as in the case of the solitary wave. 

As time progresses the overall wave height monotonically increases and by t = 46 
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FIGURE 5.  The time development of the slowly growing w = 0.82 wave unstable mode started with 
E = -0.01 laid out as in figure 4. The time development is taken from t = 0 to t = 48.88 with the 
second plot taken after a half-wave period and subsequent plots made every wave period ( t  = 5.75) 
downwards. 
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a sharp curvature has appeared in the perturbation minimum, which has moved to 
the forward face of the wave as a result of the reduction in amplitude of the basic 
wave and a subsequent reduction in its phase speed. This perturbation minimum 
deepens and becomes more sharply accented in the manner of the faster growing 
solution and a new local maximum in the perturbation starts to grow on the rear face 
of the wave. By t = 50 the wave has exceeded the maximum height for stable 
propagation and breaking is likely to occur. The wave overturns and tends toward 
breaking, which happens a t  some time slightly before t = 50.3. 

4.2. The decaying modes 
The growth rates for the decaying modes are shown in figure 6 for [el = 0.01. Both are 
seen to decay initially a t  close to the negative linear growth rate, but one solution 
decays slightly faster than the other, so we denote these the rapidly decaying 
( e  = -0.01) and slowly decaying (e = 0.01) modes, regardless of the later evolution. 

For the rapidly decaying solution after initial linear decay and nonlinear effects, 
which cause the growth curve to deviate slightly from the linear prediction, we see 
that after t = 7 a very strong nonlinear reaction begins which stops the perturbation 
from decreasing further and by t = 9 has initiated what appears to be almost linear 
growth. Inspecting the perturbation-plot development with time in figure 7 we see 
that the large curvature in the minimum a t  t = 0 remains throughout the motion and 
that the small radius of curvature maximum on the forward face of the wave is 
reduced to the benefit of a growing rear-wave-face local maximum. By t = 8.63 they 
are equal and subsequently the rear-face maximum grows, together with the 
forward-face minimum until overturning and breaking finally occurs a t  about 
t = 18.4. The form of the perturbation curvature close to the crest when leading up 
to and during overturning is very similar to that described for the growing modes. 

For the slowly decaying solution shown in figure 8 we initially have linear decay 
and slight nonlinear effects deflecting the result away from the linear stability curve 
again. At t = 5.75 we again experience strong nonlinear effects which reverse the 
decay process and initiate an almost linear growth slightly larger than the predicted 
linear value but not as large as the similar nonlinear growth of the rapidly decaying 
mode. From the perturbation profiles we see that the small radius of curvature of the 
crest maximum on the rear face is rapidly eliminated by t = 5.75, and by t = 17.26 
a small radius of curvature minimum on the forward wave face has started to grow 
together with a rear-face perturbation maximum. Again the perturbation approach 
to breaking is as described in the other three modes, as is the form of the wave profile. 

Comparisons between the later growth rates of the decaying modes and those of 
the growing modes indicate that both decaying solutions appear to be behaving 
similarly to the quickly growing mode, although there is not a precise correlation. To 
explain this breaking phenomenon for the decaying modes we can a t  present only 
suggest possible, and conflicting, physical and computational reasons for this 
behaviour. 

Physically, for a moderate initial perturbation [el = 0.01 there will be a finite 
energy disturbance of the basic wave which cannot decay to zero unless energy 
conservation be violated. Thus as the wave propagates, the nonlinear effects together 
with energy conservation must transfer energy into the growing modes, in some 
manner. Growth to breaking will occur in order to dissipate the excess energy of the 
wave for recovery of stable propagation. We cannot expect all decaying solutions to 
tend to disappear completely without some interesting nonlinear effects taking place. 
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FIGURE 6. Decay and growth of the w = 0.82 wave decaying modes with perturbation magnitude 
= 0.01 plotting 1nR against time. The predicted linear decay is shown by the dashed line. The 

slowly decaying solution has E = 0.01 and the rapid decay has E = -0.01. 

Computationally, we must consider stability theory in the vicinity of a stationary 
point. Because the solution we compute for the decaying modes will always involve 
a truncation error, we can never find the decay to zero of the perturbation which an 
ideal decaying mode would experience. Our solution lies close to this ideal decaying 
mode and approximate linear decay will be experienced initially. However, as we 
move closer to the stationary point the truncation error will have some small 
component of a growing mode which will increase exponentially with time. 
Simultaneously the decaying mode will decrease until the growing mode is dominant 
and we experience linear growth, as observed a t  later times in figure 6. 

It is not immediately obvious which of these mechanisms will be responsible for 
this numerically observed phenomenon, which may be caused by either or be due to 
both. Decaying modes may provide difficult to produce and observe experimentally 
which seems, with some speculation, to be the only way to fully resolve the physics 
of this interaction. 

5. Discussion 
We have examined and employed two approaches to the problem of two- 

dimensional Stokes wave superharmonic instabilities and both intuitively and in 
practice we find Tanaka’s method of coordinate stretching points about the wave 
crest to be a technique applicable and accurate almost up to the highest wave. Using 
this method we have calculated the time evolution of all the growing and decaying 
components of the instability. 

This method is equally reliable for the study of other problems of Stokes wave 
instabilities. To illustrate we could have used this method to find the small-scale 
superharmonic instability of MacKay & Saffman (1986), which they found using the 
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FIGURE 7. The time development of the rapidly decaying w = 0.82 wave unstable mode started 
with e = -0.01 laid out as in figure 4. The time development is taken from t = 0 to t = 17.25 with 
plots made every half-wave period ( t  = 2.875) downwards. 

Hamiltonian representation of Stokes waves employing a method not discussed in 
any detail here. From our knowledge of that  procedure we speculate that Tanaka's 
method would have given a more computationally economical result. 

For the time-stepping results it should be noted that there is great similarity 
between the breaking process exhibited by all four instability solutions since each is 
seen to be a local effect at the wave crest with a sharp minimum perturbation on the 
forward wave face and a more gently curving maximum on the rear face giving slight 
asymmetry and resulting in the wave breaking in its direction of propagation. This 
seems to support the contention held by many workers that some examples of 
breaking are purely local phenomena which, in the case of spilling breakers and more 
gently plunging breakers, occur independently of the flow in the rest of the wave. 
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FIQURE 8. The time development of the slowly decaying w = 0.82 wave unstable mode started with 
E = 0.01 laid out as in figure 4. The time development is taken from t = 0 to t = 23 with plots made 
every half-wave period downwards. 
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Comparing the slowly growing mode to the case of the solitary wave, it is clear that 
because we are now working in a periodic environment then if either radiated or 
trailing waves are emitted by the basic wave to lower its mass and momentum we 
have little opportunity to resolve and identify them. If produced these waves will 
move away from the basic wave in their initial stages of development in a form that 
we are unable to distinguish apart from the basic wave and its time-dependent 
perturbation component (the long waves emitted by the solitary waves in Tanaka 
et al. are not properly resolved until they move away from regions of large 
displacement due to the solitary wave). However, in a periodic environment these 
disturbances will re-encounter the wave as i t  moves forward and they travel back. 
They may then proceed to act on the wave in a manner so as to force it to break - 
but we cannot be sure because the process in this environment will be practically 
indistinguishable from that of a straightforward ‘growth to breaking ’ mechanism. 
Further detailed work with the slowly growing perturbation will be necessary before 
we can be sure of the physical process of breaking. Certainly the concepts of trailing 
and radiated waves seem inappropriate for serious consideration of periodic wave 
instabilities. 

It would be interesting to compare the decaying modes of the solitary wave 
instability to see if these all lead to breaking, as we experience here, or whether linear 
waves are emitted so that mass and momentum are dissipated in that way. Bearing 
in mind the behaviour of the growing modes, it seems possible that a t  least one 
decaying mode will behave in this non-breaking manner. 
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